Copied to
clipboard

G = C2xC23.19D4order 128 = 27

Direct product of C2 and C23.19D4

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2xC23.19D4, C24.113D4, C2.D8:52C22, C4.Q8:61C22, C4:C4.388C23, C22:C8:59C22, (C2xC8).141C23, (C2xC4).285C24, (C2xD4).76C23, C23.239(C2xD4), (C22xC4).436D4, D4:C4:66C22, C22.95(C4oD8), C42:C2:78C22, C4:D4.152C22, (C23xC4).555C22, (C22xC8).146C22, C22.545(C22xD4), C22.120(C8:C22), (C22xC4).1545C23, C4.57(C22.D4), (C22xD4).357C22, C22.108(C22.D4), (C2xC2.D8):24C2, (C2xC4.Q8):32C2, C4.95(C2xC4oD4), C2.20(C2xC4oD8), (C2xC22:C8):26C2, C2.25(C2xC8:C22), (C2xD4:C4):24C2, (C2xC4).1216(C2xD4), (C2xC4:D4).56C2, (C2xC42:C2):44C2, (C2xC4).843(C4oD4), (C2xC4:C4).609C22, C2.50(C2xC22.D4), SmallGroup(128,1819)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — C2xC23.19D4
C1C2C4C2xC4C22xC4C2xC4:C4C2xC42:C2 — C2xC23.19D4
C1C2C2xC4 — C2xC23.19D4
C1C23C23xC4 — C2xC23.19D4
C1C2C2C2xC4 — C2xC23.19D4

Generators and relations for C2xC23.19D4
 G = < a,b,c,d,e,f | a2=b2=c2=d2=f2=1, e4=d, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ebe-1=bc=cb, bd=db, fbf=bcd, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=cde3 >

Subgroups: 492 in 234 conjugacy classes, 100 normal (28 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, C23, C23, C23, C42, C22:C4, C4:C4, C4:C4, C2xC8, C2xC8, C22xC4, C22xC4, C22xC4, C2xD4, C2xD4, C24, C24, C22:C8, D4:C4, C4.Q8, C2.D8, C2xC42, C2xC22:C4, C2xC4:C4, C42:C2, C42:C2, C4:D4, C4:D4, C22xC8, C23xC4, C22xD4, C22xD4, C2xC22:C8, C2xD4:C4, C2xC4.Q8, C2xC2.D8, C23.19D4, C2xC42:C2, C2xC4:D4, C2xC23.19D4
Quotients: C1, C2, C22, D4, C23, C2xD4, C4oD4, C24, C22.D4, C4oD8, C8:C22, C22xD4, C2xC4oD4, C23.19D4, C2xC22.D4, C2xC4oD8, C2xC8:C22, C2xC23.19D4

Smallest permutation representation of C2xC23.19D4
On 64 points
Generators in S64
(1 35)(2 36)(3 37)(4 38)(5 39)(6 40)(7 33)(8 34)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 25)(17 46)(18 47)(19 48)(20 41)(21 42)(22 43)(23 44)(24 45)(49 60)(50 61)(51 62)(52 63)(53 64)(54 57)(55 58)(56 59)
(1 56)(2 21)(3 50)(4 23)(5 52)(6 17)(7 54)(8 19)(9 64)(10 47)(11 58)(12 41)(13 60)(14 43)(15 62)(16 45)(18 27)(20 29)(22 31)(24 25)(26 53)(28 55)(30 49)(32 51)(33 57)(34 48)(35 59)(36 42)(37 61)(38 44)(39 63)(40 46)
(1 29)(2 30)(3 31)(4 32)(5 25)(6 26)(7 27)(8 28)(9 40)(10 33)(11 34)(12 35)(13 36)(14 37)(15 38)(16 39)(17 53)(18 54)(19 55)(20 56)(21 49)(22 50)(23 51)(24 52)(41 59)(42 60)(43 61)(44 62)(45 63)(46 64)(47 57)(48 58)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 16)(2 38)(3 14)(4 36)(5 12)(6 34)(7 10)(8 40)(9 28)(11 26)(13 32)(15 30)(17 62)(18 43)(19 60)(20 41)(21 58)(22 47)(23 64)(24 45)(25 35)(27 33)(29 39)(31 37)(42 55)(44 53)(46 51)(48 49)(50 57)(52 63)(54 61)(56 59)

G:=sub<Sym(64)| (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,33)(8,34)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25)(17,46)(18,47)(19,48)(20,41)(21,42)(22,43)(23,44)(24,45)(49,60)(50,61)(51,62)(52,63)(53,64)(54,57)(55,58)(56,59), (1,56)(2,21)(3,50)(4,23)(5,52)(6,17)(7,54)(8,19)(9,64)(10,47)(11,58)(12,41)(13,60)(14,43)(15,62)(16,45)(18,27)(20,29)(22,31)(24,25)(26,53)(28,55)(30,49)(32,51)(33,57)(34,48)(35,59)(36,42)(37,61)(38,44)(39,63)(40,46), (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,40)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,53)(18,54)(19,55)(20,56)(21,49)(22,50)(23,51)(24,52)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,57)(48,58), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,16)(2,38)(3,14)(4,36)(5,12)(6,34)(7,10)(8,40)(9,28)(11,26)(13,32)(15,30)(17,62)(18,43)(19,60)(20,41)(21,58)(22,47)(23,64)(24,45)(25,35)(27,33)(29,39)(31,37)(42,55)(44,53)(46,51)(48,49)(50,57)(52,63)(54,61)(56,59)>;

G:=Group( (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,33)(8,34)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25)(17,46)(18,47)(19,48)(20,41)(21,42)(22,43)(23,44)(24,45)(49,60)(50,61)(51,62)(52,63)(53,64)(54,57)(55,58)(56,59), (1,56)(2,21)(3,50)(4,23)(5,52)(6,17)(7,54)(8,19)(9,64)(10,47)(11,58)(12,41)(13,60)(14,43)(15,62)(16,45)(18,27)(20,29)(22,31)(24,25)(26,53)(28,55)(30,49)(32,51)(33,57)(34,48)(35,59)(36,42)(37,61)(38,44)(39,63)(40,46), (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,40)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,53)(18,54)(19,55)(20,56)(21,49)(22,50)(23,51)(24,52)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,57)(48,58), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,16)(2,38)(3,14)(4,36)(5,12)(6,34)(7,10)(8,40)(9,28)(11,26)(13,32)(15,30)(17,62)(18,43)(19,60)(20,41)(21,58)(22,47)(23,64)(24,45)(25,35)(27,33)(29,39)(31,37)(42,55)(44,53)(46,51)(48,49)(50,57)(52,63)(54,61)(56,59) );

G=PermutationGroup([[(1,35),(2,36),(3,37),(4,38),(5,39),(6,40),(7,33),(8,34),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,25),(17,46),(18,47),(19,48),(20,41),(21,42),(22,43),(23,44),(24,45),(49,60),(50,61),(51,62),(52,63),(53,64),(54,57),(55,58),(56,59)], [(1,56),(2,21),(3,50),(4,23),(5,52),(6,17),(7,54),(8,19),(9,64),(10,47),(11,58),(12,41),(13,60),(14,43),(15,62),(16,45),(18,27),(20,29),(22,31),(24,25),(26,53),(28,55),(30,49),(32,51),(33,57),(34,48),(35,59),(36,42),(37,61),(38,44),(39,63),(40,46)], [(1,29),(2,30),(3,31),(4,32),(5,25),(6,26),(7,27),(8,28),(9,40),(10,33),(11,34),(12,35),(13,36),(14,37),(15,38),(16,39),(17,53),(18,54),(19,55),(20,56),(21,49),(22,50),(23,51),(24,52),(41,59),(42,60),(43,61),(44,62),(45,63),(46,64),(47,57),(48,58)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,16),(2,38),(3,14),(4,36),(5,12),(6,34),(7,10),(8,40),(9,28),(11,26),(13,32),(15,30),(17,62),(18,43),(19,60),(20,41),(21,58),(22,47),(23,64),(24,45),(25,35),(27,33),(29,39),(31,37),(42,55),(44,53),(46,51),(48,49),(50,57),(52,63),(54,61),(56,59)]])

38 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I···4P4Q4R8A···8H
order12···222224···44···4448···8
size11···144882···24···4884···4

38 irreducible representations

dim1111111122224
type+++++++++++
imageC1C2C2C2C2C2C2C2D4D4C4oD4C4oD8C8:C22
kernelC2xC23.19D4C2xC22:C8C2xD4:C4C2xC4.Q8C2xC2.D8C23.19D4C2xC42:C2C2xC4:D4C22xC4C24C2xC4C22C22
# reps1121181131882

Matrix representation of C2xC23.19D4 in GL6(F17)

1600000
0160000
0016000
0001600
000010
000001
,
1600000
0160000
0001300
004000
000004
0000130
,
100000
010000
0016000
0001600
000010
000001
,
100000
010000
001000
000100
0000160
0000016
,
0160000
100000
0001600
0016000
0000143
00001414
,
1600000
010000
001000
0001600
0000160
000001

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,4,0,0,0,0,13,0,0,0,0,0,0,0,0,13,0,0,0,0,4,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,16,0,0,0,0,0,0,0,14,14,0,0,0,0,3,14],[16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1] >;

C2xC23.19D4 in GAP, Magma, Sage, TeX

C_2\times C_2^3._{19}D_4
% in TeX

G:=Group("C2xC2^3.19D4");
// GroupNames label

G:=SmallGroup(128,1819);
// by ID

G=gap.SmallGroup(128,1819);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,456,758,100,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=f^2=1,e^4=d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,e*b*e^-1=b*c=c*b,b*d=d*b,f*b*f=b*c*d,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=c*d*e^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<